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Abstract 

Structural phase transitions ('type 0') in which there is no 
change of space group or of the occupied Wyckoff sites 
contrast with others in which diffusionless 
transformation can occur in a single step between higher- 
and lower-symmetry space groups (type I), through a 
low-symmetry transition state between relatively higher- 
symmetry initial and final structures (type II), and those 
where the mechanism is necessarily more complex (type 
III). A phenomenological model shows that type 0 
transitions are necessarily first order, and may terminate 
at a critical point. The corresponding supercritical 
behaviour is a 'crossover' or 'diffuse transition' in which 
there is no discontinuity in any free-energy derivative. 
However, the location of the crossover is precisely 
defined at a minimum in the second derivative of the free 
energy with respect to a suitable order parameter. 
Isosymmetric transitions and/or crossovers occur in 
important mineralogical systems (pyroxenes, feldspars 
and carbonates) and non-linear optic materials 
(KTiOPO4). Non-monotonic variation of free-energy 
derivatives around the crossover can have a serious 
effect on the locations and slopes of phase equilibria in 
pressure-temperature space. Interaction between 
non-symmetry-breaking and symmetry-breaking order 
parameters appears to play a major r61e in stabilizing 
low-symmetry clinopyroxene and anorthite feldspar 
phases. 
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I. Introduction 

This paper presents an extension of an approach to the 
classification of phase transitions that has been outlined 
previously (Christy, 1993). In that work, three types of 
transition were rigorously distinguished on symmetry 
criteria: 

(1) Transitions in which a low-symmetry (LS) phase is 
obtained from a high-symmetry (HS) phase by atomic 
displacements which are consistent with a unique non- 
identity irreducible representation of the higher 
symmetry. These type I transitions can be modelled 
phenomenologicaUy using Landau theory, and can be 
first or second order thermodynamically. 

(2) 'Type II' transitions in which two different HS 
structures share a common LS phase and can be regarded 
as having special cases of the LS structure which arise 
when a structural parameter of the LS structure takes 
special values. The initial and final structures (HS) and 
transition state (LS) of a 'martensitic' transition are 
examples. The free energy of such systems may be 
expressed as a Fourier series in the appropriate order 
parameter. Examples are reviewed in Tol&tano & 
Dmitriev (1993) and described in more detail in papers 
cited therein. 

(3) 'Type III' transitions, where the atomic rearrange- 
ments involved are more complex. These can be 
decomposed into multiple type I and type II steps, which 
link various transition states of specific symmetry. 
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Christy (1993) showed that the minimum number of 
steps needed for several important transitions is quite 
small (3-5), and that there is experimental evidence for 
the utilization of such short diffusionless routes in some 
'reconstructive' transitions. 

Transitions between phases which have the same 
space group, and have corresponding atoms on the same 
Wyckoff sites, do not fall into any of these categories. An 
additional type 0 is proposed to incorporate these into the 
scheme. Although isosymmetric transitions are well 
known for amorphous systems (e.g. the liquid-gas 
transition) and electronic transitions (metal-insulator, 
valence transitions), only a few examples are currently 
known where the transformation is predominantly 
structural, i.e. where a change in the atomic coordination 
environment appears to be the driving force. It will be 
apparent from the examples discussed below that a 
change in unconstrained axial ratios or atomic coordi- 
nates does indeed result in distinctively different 
coordination environments and energetics without a 
change in symmetry for some systems. Intimately 
associated with isosymmetric transitions are supercritical 
'crossovers' in which thermal expansivity and/or com- 
pressibility vary non-monotonically with temperature or 
pressure. These may be more widespread than discontin- 
uous isosymmetric transitions, but the causative factors 
are similar. 

First, a Laundau-type free-energy expansion is con- 
structed, from which the phase equilibrium topology for 
these materials is predicted. Initially, the thermo- 
dynamics are considered of a hypothetical model system 
which exhibits the possibility of an isosymmetric 
transition. In the final section, the behaviour of real 
systems will be interpreted in the light of that predicted 
by the model. 

2. Phenomenology 

Suppose a structure has an unconstrained parameter 
(atomic coordinate axial parameter or ratio) Q. There is 
no special significance to the zero value of Q, which may 
be chosen arbitrarily. The free energy G may be assumed 
to vary as a polynomial in Q. Since Q and all its powers 
transform as the identity representation, and there is no 
requirement for G to be symmetrical about Q = 0, we 
write 

G = aQ + bQ z + cQ 3 q- dO 4 (--1- higher-order terms). 

(1) 
We assume that this equation provides a fair approxima- 
tion to the free energy over some finite Q range of 
interest. Stable or metastable phases have Q values 
corresponding to the minima of G. Inclusion of fourth- 
order terms in (1) allows up to two such minima. There 
may be more if higher-order terms are significantly 
negative. Materials that do not show isosymmetric 
transitions have one free-energy minimum only. 

The origin of Q could be shifted so as to eliminate the 
first-order term in (1), but one stationary point of G 
would then be constrained to be at Q = 0. It will be seen 
below that this obscures the nature of the supercritical 
behaviour in this model system. However, 2-3-4 
potentials have been used in phenomenological studies 
of first-order and isosymmetric transitions (Krumhansl & 
Gooding, 1989; Kerr & Rave, 1993). 

Consider the variation in the shape of G(Q) as the 
coefficients a and b are varied (as may occur in response 
to a change in temperature or pressure). Six distinct 
themlodynamic rrgimes may be distinguished, as shown 
in Figs. l(a) and (b). Those labelled 'R' have the most 
stable minimum in G on the right (high Q), those labelled 
'L' have the most stable state for low Q. The rrgimes 
labelled '1 '  have only a single energy minimum and no 
regions of instability. Those labelled '3 '  have a stable 
minimum, a metastable minimum and a distinct energy 
maximum separating the two. The intermediate regimes, 
labelled '2' ,  have only one minimum, but there is a 
region to one side of it where there is spinodal instability 
with respect to fluctuations in Q. The curve shapes 1-3 
can be defined in terms of the behaviour of the 
derivatives dG/dQ and d2G/dQ z as follows. 

(1) In regions R1 and L1, the first derivative has three 
roots and the second derivative has two over the Q range 
of interest. 

(2) In R2 and L2, the first derivative has three roots but 
the second derivative has none. 

(3) In R3 and L3, the first derivative has only one root 
and the second has none. 

Variation in the coefficient a does not affect the shape 
of the dG/dQ curve. An increase in a will result in 
progression through the rrgimes R2-R3-L3-L2 or R I -  
Ll. Conversely, changing b does affect the shape of the 
dG/dQ curves. An increase in b causes the curve shape 
to change to R2-R1 or R2-R3-L3-L2-L1. 

Examination of the derivatives of G with respect to Q 
allows the rrgime boundaries to be defined more 
quantitatively in terms of the coefficients a-d. 

(1) The dG/dQ cubic derived from (1) has the form 

dG/dQ = a + 2bQ + 3cQ 2 + 4dO3; (2) 

this cubic has a distinct maximum and minimum only if 
real roots exist for 

d2G/dQ z = 2b + 6cQ + 12dQ z = 0, (3a) 

that is 

b < 3c2/8d. (3b) 

This value of b delineates the (R1, L1)/(R2.L2) bound- 
ary. 

(2) All six curve types meet when the roots of the 
dG/dQ cubic are coincident. This occurs when 

b = 3c2/8d and a = c3/64d 3. (4) 
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For constant (c, d), this implies the existence of a 
critical point in (a, b) space, at which all boundary lines 
between fields of different curve shape converge. 

(3) A third differentiation of G with respect to Q gives 

d3/dQ 3 = 6c + 24dQ, (5) 

so the position of the inflexion in the dG/dQ cubic is at 
Q = -c/4d,  independent of a and b. 

The conditions (1) and (2) above are summarized in 
the qualitative phase diagram shown in Fig. 2. Topolo- 
gically, this is identical to the gas-liquid diagram 
obtained from consideration of the van der Waals 's 
equation of state. If a and b are approximately monotonic 
functions of intensive variables such as pressure or 
temperature, this phase diagram topology would be 
preserved. 

Thermodynamically, the changes in curve shape may 
be described as follows. 

(1) The R2-R3-L3-L2 progression corresponds to a 
first-order transition. The R2/R3 and L2/L3 boundaries 
are limits of metastability for the less stable phases on 
each side. The transition occurs when the central root of 
the dG/dQ cubic (corresponding to the local energy 
maximum between phases) crosses the inflexion point at 
Q = -c/4d.  This is depicted in Fig. 3(a). 

(2) R2-R1 (or L1-L1) corresponds to closure of the 
spinodal instability, but not a phase transition (Fig. 3b). 

(3) R1-L1 is more interesting in that a root of the 
dG/dQ cubic crosses the inflexion line. At the crossover 
point, d2G/dQ 2 is at a minimum, and Q changes fast 
from a value typical for the 'right-hand' phase to a value 
more appropriate for the 'left-hand' phase. A 'diffuse'  or 
'crossover' transition occurs. Although there are no 
thermodynamic discontinuities, the location of the 
crossover as a function of intensive variables such as 
pressure and temperature can be precisely specified at the 
zero in d3G/dQ 3 (Fig. 3c). 

/ 
R2 L2 

RI L1 

R1 

(a) Q (b) 

L2 

LI 

Rs 

Q 

Fig. 1. (a) Variation of G with Q for six distinct geometries of the free-energy quartic. Stationary points are labelled R s (stable minimum), R m 
(metastable minimum) and R a (unstable energy maximum). (b) Variation of dG/dQ with Q for the six different curves of (a). 
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Note that a second-order transition cannot occur 
without coalescing the R 1/R2/R3/L3/L2/L 1 boundaries 
into a single line, which requires c -- 0. Since there is no 
change in symmetry in this model system, there is no 
symmetry constraint that forces this condition. Therefore, 
truly continuous transitions will not be observed 
although (a, b) paths that go through the critical point 
will result in apparent second-order behaviour (Fig. 3d). 

3. Discussion and examples 

It is apparent that isosymmetric phase transitions are 
necessarily first order. When plotted against two 
intensive state variables such as pressure and tempera- 
ture, the equilibrium line terminates at a critical point but 
extrapolates into a crossover line. Physical properties 
change rapidly but continuously at the crossover, whose 
location is given by a minimum in d2G/dQ 2. 

Electronic transitions provide familiar examples of 
first-order transitions and critical points (e.g. Ce metal: 
Jayaraman, 1965) and crossover [the 'diffuse valence 
transition' in EuPd2Si 2 (Adams, Heath, Jhans, Norman & 
Leonard, 1991)]. In the case of Ce, the crossover 
behaviour is still abrupt enough to cause a change in 
the slope of the melting curve 1.55 GPa and 385 K above 
the c~/y critical point. A contrasting example is provided 
by the change in slope of the helically ordered- 
disordered phase boundary in CsCuCI 3, a compound in 
which the Jahn-Teller distorted CuC16 octahedra may 
each adopt one of three different orientations. This may 
be related to a (presumably isosymmetric) static- 
dynamic disorder transition in the high-symmetry phase 
(Christy, Angel, Haines & Clark, 1994). Atomic 
displacements are unimportant in all these cases. Below, 

systems are considered where the transition is primarily 
'structural', i.e. changes in atomic coordinates and 
environments play a vital r61e in the transition. 

Christy (1993) stressed the need for atomic displace- 
ments at a type I or II phase transition to be consistent 
with the symmetry of an extant phonon. For the 
intermediate steps of a type III transition, the phonon is 
not required to soften to zero velocity between transition 
states since these states are of ephemeral existence. 
Krumhansl & Gooding (1989) have pointed out that full 
phonon softening is not observed in most phase 
transitions. For isosymmetric type 0 transitions, the only 
atomic coordinates that change are those unconstrained 
by the current symmetry. Therefore, the existence is 
guaranteed of a corresponding identity-representation 
phonon. 

The likelihood of isosymmetric structural transitions 
was recognized by Cowley (1980), who cited as a 
possible example KHPO 4 (Eberhard & Horn, 1975). In 
the last few years, a number of examples have been 
found. These are loosely classified below. 

(1) Transitions dominated by coordination change. 
The volume change at the 0.3 GPa II-IV transition in 
KNO 3 is 11.5%, although diffraction and spectroscopic 
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Fig. 2. Generalized phase diagram topology. Metastability limits for 
phases L and R are the boundaries between regions labelled '2' and 
'3'. The crossover is between R1 and LI, and the spinodal line 
follows the I-2 boundaries. Arrows (a)-(d) are the trajectories in 
(ab) space of Fig. 3. 
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Fig. 3. Trajectories of stationary points in P-Q space, where P is an 
intensive variable such as pressure or temperature, and is taken to be 
a locally monotonic function of a and b. Corresponding values of a 
and b for cases (a)-(d) are shown in Fig. 2. Loci are labelled as 
follows. I =inflexion in dG/dQ cubic; M , / M  x =minimum and 
maximum of cubic; others as in Fig. 1. The stable equilibrium value 
of Q is shown by the solid line, metastable by dashes, unstable by 
heavy dots. The four cases are: (a) first-order phase transition 
(a increases with P, less positive b); (b) crossover (a increases with P, 
more positive b); (c) closure of spinodal (b increases with P); 
(d) continuous transition through a critical point. 
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studies indicate that space group and Wyckoff  sites are 
identical for both phases (Worlton, Decker, Jorgensen & 
Keb, 1986; Adams, Hatton, Heath & Russell, 1988). 
However, the coordination number of K increases from 9 
to 11. 

(2) Transitions due to framework collapse. The 5.5 
GPa transition in KTiOPO 4 involves crumpling of the 
T i - - O - - P  framework and a relative slip of its 
constituent chains. The transition is strongly first order, 
with a volume decrease of 4.2% (Allan, Loveday, 
Nelmes & Thomas, 1992; Allan & Nelmes, 1992). 
Framework collapse also leads to distinctive structural 
parameters for  the high-pressure and high-temperature 
forms of I1 anorthite feldspar, CaA12Si20 8, although 
these appear to be separated by a crossover rather than a 
first-order transition over the pressure-temperature range 
examined to date. This would account for the observation 
that the equilibrium line separating the body-centred 
phase from the low-pressure, low-temperature P1 phase 
is strongly curved (Redfern & Salje, 1992); Hackwell & 
Angel, 1993). 

(3) Transitions arising due to the existence of two 
competing order parameters, which can independently 
cause the same descent from a higher symmetry. Each 
type of order predominates over the other in a distinct 
pressure-temperature regime. An example of crossover 
driven in this fashion is provided by the behaviour of the 
spontaneous strain and cation ordering of albite feldpar, 
NaAISi30 8, as a function of temperature (Salje, 
Kuscholke, Wruck & Kroll, 1985). The phases of 
KTiOPO 4 are both Pna21 in symmetry, but show a 
common P n a n  pseudo-symmetry. This suggests that 
there are two distinct structural mechanisms for breaking 
the higher symmetry in this system also. 

(4) High-pressure transitions and crossovers arising 
from a change in dominant compression mechanism. 
These have been documented for MgSiO 3 orthopyroxene 
(Hugh-Jones & Angel, 1994) and the carbonate minerals 
magnesite, MgCO 3, and dolomite, CaMg(CO3) 2 (Fiquet, 
Guyot & Iti6, 1994). 

In all the above examples, distinct phases can be 
distinguished only along pressure-temperature paths 
which cross the first-order transition line. Maxima in 
compressibility or thermal expansivity indicate a cross- 
over, which does not  separate thermodynamically 
distinct phases but m a y  extrapolate into a first-order 
transition line. Therefore, a crossover indicates an 
incipient isosymmetric transition which may be observed 
experimentally under different pressure-temperature 
conditions if the structure does not undergo transitions 

of types I -HI first. Careful characterization of the 
crossover behaviour in I1 anorthite is important in 
order to define a reference I1 structural state in the 
stability field of the P1 phase, so as to describe the type I 
I 1 - P 1  transition properly (Hackwell & Angel, 1995). 
Crossover in a phase may have a marked influence on the 
rest of the phase diagram. For instance, it has recently 
been shown (Christy & Angel, 1995) that the low- 
pressure/low-temperature P1 phase of anorthite and 
pigeonite phase of clinopyroxene may in fact be 
stabilized relative to the corresponding high-symmetry 
phases due to coupling of the non-symmetry-breaking 
order parameter with a cell-doubling order parameter 
near the crossover in the high-symmetry phase. 

I would like to thank Dr S. M. Clark, Dr R. J. Angel 
and an anonymous referee for discussions and comments 
which much improved this work. This paper is an 
extensive revision of an early draft prepared while 
working at the Daresbury Laboratory, Warrington, 
England. 
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